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FOREWORD

This publication, the Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1
and LAN/SX Release 6.1.1 is being issued by the National Computer Security Center under the authority
of and in accordance with DoD Directive 5215.1, “Computer Security Evaluation Center.” The purpose of
this report is to document the results of the formal evaluation of Harris CX/SX Release 6.1.1 and LAN/SX
Release 6.1.1 operating system and network products. The requirements stated in this report are taken from
Department of Defense Trusted Computer System Evaluation Criteria, dated December 1985, and
from Trusted Network Interpretation, dated July 1987.

Approved:

Patrick R. Gallagher, Jr. 15 September 1993
Director,
National Computer Security Center
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EXECUTIVE SUMMARY

This report presents an analysis of the security features and assurances provided by Harris Computer Sys-
tems s CX/SX Release 6.1.1 operating system and LAN/SX Release 6.1.1 network product. CX/SX and
CX/SX with LAN/SX were evaluated as two products, and each has received a rating.

The security protection provided by the CX/SX operating system, con gured according to the most secure
manner described in the CX/SX Trusted Fa ility Manual 11 and running on the Harris Night Hawk
000 series of multiprocessors, has been examined by the National Security Agency NSA . The security
features of CX/SX were evaluated and tested against the requirements speci ed by the Trusted Computer
System Evaluation Criteria TCSEC 18, dated December 1985, in order to establish a rating.

The security protection provided by CX/SX with the LAN/SX network product, con gured according to the
most secure manner described in the CX/SX Trusted Fa ility Manual and running on the Harris Night
Hawk 000 series of multiprocessors, was also examined. CX/SX with LAN/SX was examined as it operates
in a network con gured to meet the requirements and assumptions described in the Network Se urity
Ar hite ture Do ument NSAD 38. The security features of CX/SX with LAN/SX were evaluated
and tested against the requirements speci ed by the Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria TNI 52, dated July 31, 1987, in order to establish a rating.

The NSA evaluation team has determined that the highest class at which CX/SX satis es all the speci ed
requirements of the TCSEC is class B1. CX/SX with LAN/SX satis es all the speci ed requirements of the
TNI for a B1 MDIA network component.

A system that has been rated as being a class B1 system provides a trusted computing base TCB that
preserves the integrity of sensitivity labels and uses them to enforce a set of mandatory access control rules.
B1 systems also provide discretionary access controls, identi cation and authentication, ob ect reuse controls,
and auditing facilities. Assurance is provided primarily through architectural analysis and testing. A system
that has been rated as a class B1 network component provides a network trusted computing base NTCB
partition that preserves the integrity of sensitivity labels and uses them to enforce a set of mandatory access
control rules.

The Harris Night Hawk 000 series is a multiprocessor system based on the Motorola 88100 reduced instruc-
tion set computer RISC processor. Models in the series allow up to eight processors. A bus architecture
is used to interface with memory, controllers, and peripherals. CX/SX is based on CX/UX, Harris s version
of UNIX. Auditing and labeling support are added to CX/UX to produce CX/SX.

LAN/SX is a secure networking product that allows host machines to connect to networks supporting a range
of labels. CX/SX with LAN/SX can be connected to Ethernet and VSLAN networks composed of single-level
machines and/or multilevel machines. When a CX/SX with LAN/SX system is connected to a network, all
machines in that network are assumed to meet certain assumptions and requirements as described in the
Network Se urity Ar hite ture Do ument 38.

Communication between host machines is performed through , and . Communication takes
place over single-level Internet protocol IP connections and is sub ect to the LAN/SX security policy.
LAN/SX provides security features using security option extensions to the IP. The evaluated security options
provided with LAN/SX include the Internet Protocol Security Option/Basic Security option IPSQ/BSO
and the Commercial Internet Protocol Security Option CIPSO .
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In November 1991, the National Computer Security Center NCSC began a developmental product evalu-
ation of CX/SX, a Harris Computer Systems product and a developmental product evaluation of LAN/SX,
a Harris Computer Systems network product.

This report is to presents an analysis of the security features and assurances provided by the CX/SX Release
6.1.1 operating system and the LAN/SX Release 6.1.1 network product. This report documents the evalu-
ation team s understanding of the products security design and appraises their functionality and integrity
against the B division security requirements in the Trusted Computer System Evaluation Criteria
TCSEC 18 and in the Trusted Network Interpretation of the Trusted Computer System Eval-
uation Criteria TNI 52 . Material for this report was gathered by the National Security Agency NSA

CX/SX evaluation team through documentation and interaction with system developers.

The Department of Defense Computer Security Center was established in January 1981 to encourage the
widespread availability of trusted computer systems for use by facilities processing classi ed or other sensitive
information. In August 1985 the name of the organization was changed to the National Computer Security
Center. In order to assist in assessing the degree of trust one could place in a given computer system, the
DoD Trusted Computer System Evaluation Criteria TCSEC was written. The TCSEC establishes speci ¢
requirements that a computer system must meet in order to achieve a prede ned level of trustworthiness. The
TCSEC levels are arranged hierarchically into four ma or divisions of protection, each with certain security-
relevant characteristics. These divisions are in turn subdivided into classes. To determine the division and
class at which all requirements are met by a system, the system must be evaluated against the TCSEC by
an NSA, Trusted Product and Network Security evaluation team.

The NSA supports the creation of secure computer products in varying stages of development, from initial
design to those that are commercially available. Preliminary to an evaluation, products must go through
the proposal review phase. This phase includes an assessment of the vendor s capability to create a secure
system and complete the evaluation process. To support this assessment, a preliminary technical review
PTR of the system is done by the NSA. This consists of a quick review of the current state of the system
by a small, but expert, team and the creation of a short report on the state of the system. If a vendor passes
the proposal review phase they will enter a support phase preliminary to evaluation. This support phase has
two steps, the vendor assistance phase VAP and the design analysis phase DAP . During VAP, the newly
assigned team reviews design speci cations and answers technical questions that the vendor may have about
the ability of the design to meet the requirements. A product will stay in VAP until the vendor s design,
design documentation, and other required evidence for the target TCSEC class are complete and the vendor
is well into implementation. At that time, the support moves into DAP.

The primary thrust of DAP is an in-depth examination of a manufacturer s design for either a new trusted
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product or security enhancements to an existing product. DAP is based on design documentation and
information supplied by the industry source, and involves little “hands on” use of the system. During this
phase the vendor should virtually complete the implementation of the product. DAP results in the production
of an Initial rodu t Assessment Report I AR by the NSA assessment team. The IPAR documents
the team s understanding of the system based on the information presented by the vendor. Because the
I AR contains proprietary information and represents only a preliminary analysis by the NSA, distribution
is restricted to the vendor and the NSA.

Products that have completed the support phase with the successful creation of the I AR enter formal
evaluation. Products entering formal evaluation must be complete security systems. In addition, the release
being evaluated must not undergo any additional development. The formal evaluation is an analysis of the
hardware and software components of a system, all system documentation, and a mapping of the security
features and assurances to the TCSEC. The analysis performed during the formal evaluation requires “hands
on” testing i.e. functional testing and, if applicable, penetration testing . The formal evaluation results
in the production of a nal report and an Evaluated rodu ts List E L entry. The nal report is a
summary of the evaluation and includes the E L rating, which indicates the nal class at which the product
satis es all TCSEC requirements in terms of both features and assurances. The nal report and E L entry
are made public.

After completion of the formal evaluation phase, products rated at B1 and below enter the rating maintenance
phase RAMP . The rating maintenance phase provides a mechanism to extend the previous rating to a new
version of an evaluated computer system product. As enhancements are made to the computer product, the
ratings maintenance phase ensures that the level of trust is not degraded.

Rating maintenance is accomplished by using quali ed vendor personnel to manage the change process of
the rated product during the maintenance cycle. These personnel must have a strong technical knowledge of
computer security and their computer product. They will oversee the vendor s computer product modi cation
process. They will also demonstrate to the Trusted Product and Network Security Evaluation Division that
any modi cation or enhancements applied to the product preserve the security mechanisms and maintain
the assurances required by the TCSEC for the rating previously awarded to the evaluated product.

The following is a brief history and overview of Harris s CX/SX operating system and LAN/SX network
product running on the series 000 Night Hawk product line. See Part II for detailed descriptions of items
discussed here.

Harris rst produced the Night Hawk 3000 Series a predecessor of the 000 Night Hawk . These machines
accomodate up to eight of the Motorola 68030 microprocessors and use the Harris virtual memory exten-
sion HVME bus architecture for input/output I/O . Small computer system interface SCSI buses and
controllers are used for peripheral hardware such as disk drives, tape drives, and terminals.

The Series 000 Night Hawk product line was introduced next. The rst model in the series HN 00 allows
up to four Motorola 88100 reduced instruction set computer RISC -based microprocessors. This machine
has more I/O capacity than the 3000 series and introduces the use of an I/O daughterboard for access to
the Ethernet or SCSI peripherals without using up a slot on the HVME bus. The next model in the 000
series HN 800 accomodates up to eight CPUs and provides higher performance than the rst model.
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The CX/SX operating system is based on Harris s CX/UX operating system. CX/UX provides memory
management, process management, interprocess communication IPC | device drivers, discretionary access
control DAC the DAC in CX/SX is based on traditional UNIX DAC , and I/O management. CX/UX is
based on UNIX and has features found in American Telephone and Telegraph AT T , Berkeley Software
Distribution BSD , and Sun UNIX operating systems. CX/UX is an operating system that takes advantage
of the Night Hawk s multiprocessor con guration.

CX/SX is created by adding security features to CX/UX. AT T s System V/MLS features were ported to
CX/UX by a oint development e ort between Harris and AT T. Harris then made Berkeley, virtual le
layer, and Network File System extensions to the AT T features. The main features added were mandatory
access control MAC , auditing, and trusted path. The rst release was CX/SX version .1 in June 1989.
Support for the HN 800 was added in September 1991 with CX/SX version 5.3. Version 6.1 is under
evaluation.

The ob ects protected by CX/SX are les, directory les, device special les, symbolic links, named pipes,
semaphores, message queues, shared memory, UNIX domain sockets, and processes. A process is the only
kind of sub ect supported by CX/SX.

Harris uses di erent terminology than is common in the security community for representing privileges and
the labeling of sub ects and ob ects. In CX/SX a sensitivity label and a discretionary group are combined
and called a “privilege.” The sensitivity label is a hierarchical level and a set of nonhierarchical categories.
The discretionary group represents a set of users, and all users in a discretionary group must be cleared to
the privilege s sensitivity label. Sub ects and ob ects are then associated with a privilege see page ,“ 7,
for the detailed description of privileges . Access vectors are used to provide processes with the ability to
be exempted from the security policy and implement what is usually described as a privilege see page 117,

“Access Vectors”, for more details .

The LAN/SX network product provides B1 security features for transmission control protocol TCP , user

datagram protocol UDP , and the Internet protocol IP . LAN/SX interfaces with Ethernet frame-level

software or the Verdix Secure Local Area Network VSLAN . LAN/SX supports connections to both single

level and multi-level networks via IP security options along with auditing of security relevant events. ,
, and are provided to support trusted network communications.

LAN/SX works with the CX/SX trusted computing base TCB to make use of sockets, identi cation and
authentication, and MAC features. The NTCB partition is the combination of the CX/SX TCB, LAN/SX,
and trusted network servers. In addition to the CX/SX sub ects and ob ects, LAN/SX adds Internet sockets
as ob ects.

This report is divided into four main parts. Part I contains the introductory chapters. Part II contains
chapters describing the hardware and software architectures of CX/SX and LAN/SX, along with a chapter
about administrative tools. Part III contains chapters describing the TCB protection mechanisms, the
network trusted computing base NTCB protection mechanisms, and system assurances. Part IV contains
the mapping between the requirements from the Trusted Computer System Evaluation Criteria TCSEC
and the Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria TNI and
the CX/SX and LAN/SX features that ful 1l those requirements, as well as a chapter on the evaluators
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comments. The appendices identify speci ¢ hardware and software components to which the evaluation
applies, list acronyms, and contain a reference list.

The type style is used for commands and instructions. Process names, le names, data structures,
and system calls are in the type style. The bold type style is used for functions, arguments,
and document titles.

FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1

FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1

This page intentionally left blank

FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1

The Harris Series 000 hardware architecture encompasses two models: HN 00 and HN 800. The HN 00
consists of one single board processor SBP with one, two, or four central processing units CPUs the
HN 800 allows for expansion to four SBPs with one or two CPUs per SBP. Physical memory on both models
is composed of local and/or global memory modules. The implementation of the memory bus protocol on the
HN 800 is somewhat di erent than that of the memory bus protocol on the HN 00, but the di erences are
minor and not security-relevant. Unless otherwise stated, the term “Series 000” refers to both the HN 00
and HN 800.

Elements of the Series 000 architecture are shown in Figure 2.1. Each CPU is supported by two, four, or eight
cache/memory management units CMMUs on a H PERmodule. The H PERmodule is a daughter board
that is attached to the SBP along with local memory. The SBP communicates with global memory through
the memory bus, and the SBP and global memory communicate with various I/O controllers, communication
boards, and peripherals through the Harris virtual memory extension HVME bus. The following devices
are supported in the evaluated con guration: the Harris SCSI adapter HSA , the high performance serial
HPS controller, the integral SCSI Ethernet ISE controller, the Verdix Network Security Device NSD
interface, and the Excelan and Eagle Ethernet interfaces. Each of these hardware components is described
in the remainder of this chapter.

The heart of the Series 000 architecture is the Motorola MC88100 reduced instruction set computer RISC

CPU. As shown in Figure 2.2, the CPU MC88100 consists of four execution units: integer, oating-point,
data, and instruction. All of these units operate concurrently. The integer unit and the oating-point unit
execute all data-manipulation instructions. Data memory accesses are performed by the data unit, and
instruction prefetches are performed by the instruction unit.

In addition to these execution units, the CPU contains a register le/sequencer, which includes the general-
purpose registers and performs many control functions. The CPU also has three internal buses: a source 1
bus, a source 2 bus, and one destination bus. These internal buses are used for passing operands between
the register le and the di erent execution units.

The CPU provides register-to-register operation for all data manipulation instructions. Source operands are
either located in source registers or provided as an immediate value embedded in the instruction. A separate
destination register stores the results of an instruction, which allows source operand registers to be reused
in subsequent instructions. All instructions are implemented as single-word 32-bit opcodes.

The CPU uses separate data and instruction memory ports. Operand reads and writes from and to memory
are performed through dedicated operand address and data paths 30-bit operand address bus, 32-bit operand
bus instruction fetches also occur over dedicated instruction address and data paths 30-bit instruction

FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1
CHAPTER 2. HARDWARE ARCHITECTURE

SBP m
HY PERmodule

L ocal
Memory IIiH!II

CMMU| |CMMU Memory Bus (100 M B/sec) Global
o5 Memory
L |-
(H)VME Bus (40 MB/sec)

HSA HPS 1 verdix Ethernet
— . — —

\AA A4

Figure 2.1. Series 000 Layout

address bus, 32-bit instruction bus . These ports operate concurrently, eliminating bus contention between
data accesses and instruction fetches.

The CPU de nes two modes of operation: supervisor mode and user mode. A program may be executing in
either supervisor or user mode. The CPU changes from user mode to supervisor mode when an exception
occurs see page 13, “Exceptions” . While in supervisor mode, the CPU can read from and write to all
CPU and CMMU registers see page 11, “CPU Registers” , can execute all CPU instructions see page 11,
“CPU Instruction Set” , and can access the entire user and supervisor virtual address space see page 36,
“Memory Management” . While in user mode, the CPU can only read from and write to the CPU general-
purpose registers and two of the CPU control registers, can execute all but the supervisor instructions, and
can only access user virtual address space.

Executing programs access memory through virtual addresses because physical memory is limited in size
see page 25, “Memory Modules” . Virtual addresses allow executing programs to access a potentially
larger range of memory addresses than are available physically. The Harris Series 000 architecture de nes
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8 GB of virtual address space that is accessible via 32-bit virtual addresses. The architecture provides
a -GB user address space for each executing program, and a single -GB supervisor address space see
page 36, “Memory Management” . A CPU can access all of virtual memory when in supervisor mode, but
cannot access supervisor space when in user mode. Virtual addresses are translated to physical addresses by
hardware translation tables as described on page 20, “Address Translation”.

The CPU can execute most of its 51 instructions in one machine cycle. Memory-access and oating-point in-
structions are performed by dedicated execution units, releasing other processor resources during multicycle
instructions. The oating-point, data, and instruction units implement execution pipelines, so one multi-
cycle instruction can be started in each clock cycle. All instructions are implemented directly in hardware,
precluding the need for microcoded operations.

Seven CPU instructions see Table 2.1 , called supervisor instructions, can be executed only while the CPU
is in supervisor mode. Any attempt to execute a supervisor instruction while the CPU is in user mode results
in a privilege violation. Supervisor instructions are used by the CX/SX kernel to manipulate CPU registers
in order to provide resource allocation, exception handling, and software execution control.

The CPU contains three types of 32-bit registers that provide data and control information to the execution
units: general-purpose, control, and internal. The general-purpose and control registers are readable and
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| Instruction | Purpose |
lder load from control register
1d.usr load from user address space
rte return from exception
ster store to control register
st.usr store into user address space
XCr exchange control register
xmem.usr | exchange memory into user address space

Table 2.1. Supervisor Instructions

writeable by a program executing in supervisor mode. The internal registers are not available to any program
they can only be modi ed and used indirectly. Only the CPU can read from and write to the internal registers,
and only when the CPU is in supervisor mode.

General- urpose Registers

The 32 general-purpose registers, located in the register le/sequencer, are used to pass source operands and
instruction results. All of these registers are readable and writeable by a program executing in user mode
with the exception of general-purpose register 0, which contains a constant zero and to which a write has no
e ect.

Control Registers

The 32 control registers, located in various execution units, are used to pass status, execution control, and
exception processing information. Only the oating-point user status register and the oating-point user
control register are readable and writeable by a program executing in user mode the rest of the control
registers are neither readable nor writeable by a program executing in user mode.

The processor status register PSR is a control register that contains information about the current opera-
tions of the CPU. The PSR bits are set by hardware or software to report the status of CPU operations or
to control CPU operations. The important bits in the PSR are the supervisor/user mode MODE bit, the
interrupt disable IND bit, and the shadow freeze SFR  bit. The MODE bit is set by hardware when the
CPU changes to the supervisor mode it may be cleared by software to return the CPU to user mode. The
IND bit is automatically set by hardware to disable interrupts when an exception occurs it can also be set
or cleared by the or supervisor instructions to speci cally disable or enable interrupts. The SFR
bit is set by hardware when an exception occurs to “freeze” or preserve the CPU context for the exception
it can also be set or cleared explicitly by the or instructions or implicitly by an  instruction.

Internal Registers

There are four internal registers that are used by the CPU to track instruction execution and register
dependencies. The execute instruction pointer register contains the address of the instruction that is currently
being executed. The next instruction pointer register contains the address of the instruction that is currently
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being received from memory and will be the next to execute. The fetch instruction pointer register contains
the address of the next instruction to be fetched this address is used for instruction prefetch. The scoreboard
register contains a bit corresponding to each general-purpose register if the bit is set, the corresponding
general-purpose register is currently being used by an executing instruction. These registers are located in
the register le/sequencer and instruction unit.

Exceptions provide a means to control I/O requests, process disruptions, and other asynchronous events that
require changing the explicit ow of control. This section details the exceptions encountered and processed
by the CPU. The descriptions include the actions performed by the CPU to recognize an exception and to
resume normal processing after the exception, as well as the operations required from software to handle
certain exception conditions.

Exceptions occur as a result of four types of conditions: interrupts, externally signaled errors, internally
recognized errors, and trap vectors. Interrupts are generated by the assertion of the single interrupt request
signal on the CPU. Since the CPU has only one interrupt input, external hardware must map all external
interrupt requests to this signal. Examples include console wakeup, system fault, and HVME interrupts.
The HN 00 contains 2 interrupt sources, and the HN 800 contains 63 interrupt sources. Externally
signaled errors occur when a data memory access or an instruction prefetch fails to complete normally.
Examples include nonexistent address faults, segment or page faults, privilege or write protection violations,
and bus errors. Internally recognized errors occur internal to CPU processing. Examples include over ow,
unimplemented opcode, and divide-by-zero. Trap vectors are de ned by Harris to provide ow control from
user mode to supervisor mode. CX/SX uses only three trap vectors all others are re ected.

Shadow Registers and the E eption-Time SR

The instruction unit maintains copies of internal registers for use during CPU exception processing. The
data unit and FPU also maintain copies of internal registers to allow full recovery when exceptions occur.
The copies of internal registers are referred to as shadow registers and are updated on every clock cycle when
shadowing is enabled. Shadowing is enabled when the shadow freeze bit in the PSR is cleared by software.
The SFR  bit is set by hardware when an exception is processed to preserve the CPU context. It can be
cleared by software after the context is saved for example, when the context is stored on a stack .

The exception-time processor status register EPSR is an exception-time register and not a shadow register.
The only di erence between the EPSR and a shadow register is that the integer unit updates the EPSR only
at the time an exception is processed, rather than on every clock cycle.

E eption Ve tors and the Ve tor ase Register

Exception vectors are the entry points into the exception handler routines. An exception vector contains
the rst two instructions of an exception handler routine. The CPU maintains a vector table consisting of
512 exception vectors on a -KB memory page that is pointed to by the vector base address in the vector
base register VBR . Each exception has a corresponding exception number, which is generated by hardware
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| Exception | De nition |
0 Reset
1 Interrupt
2 Instruction access
3 Data access
Misaligned access

5 Unimplemented opcode
6 Privilege violation
7 Bounds check violation
8 Tllegal integer divide
9 Integer over ow
10 Error

11-113 Reserved for supervisor and future use

11 -127 Reserved

128-511 Reserved for Harris de nition trap vectors

Table 2.2. Exception Vectors

or speci ed as a 9-bit eld in a trap instruction. This number is used as the index into the vector table.
Table 2.2 lists the exception numbers and their respective exception conditions.

The VBR is loaded by CX/SX as part of the system initialization procedure. It may be modi ed by CX/SX
to dynamically specify di erent pages of exception vectors. The least-signi cant twelve bits of the VBR are
unused. The VBR is initialized to zero on reset. Exception vector addresses are formed by concatenating
the 20 most-signi cant bits of the VBR, with the 9-bit exception number. This 29-bit value has three zeros
appended to form a 32-bit address.

E eption riority

When multiple exceptions occur, they are recognized by the CPU according to the priority shown in Table 2.3.
Exceptions that have the same priority never occur simultaneously.

Reset and Error E eptions

CPU reset is a special exception case that occurs when the reset signal is detected. Reset exception processing
forces the CPU into a prede ned initial state. No pending exceptions or partially executed instructions are
retained. The VBR is cleared, and the PSR and bus signals enter prede ned states.

The error exception occurs when shadowing is frozen and an exception other than a trap instruction occurs.
This exception usually occurs when the CPU has not nished processing a rst exception when a second
exception occurs a catastrophic condition . The error exception also occurs when the CPU encounters a
fault while fetching an exception vector i.e. an exception vector could not be fetched . To limit error
exceptions, Harris saves the CPU state and immediately reenables shadowing when an exception occurs.
Should an error exception occur, the error exception handler halts the CPU and initiates a reset operation.
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| Priority | Exceptions |

1 Reset
2 Instruction Access
3 Unimplemented Opcode

Privileged Violation
Misaligned Access
Integer Over ow

5 Illegal Integer Divide
Trap Instructions
Bounds Check

FPU Precise

6 Interrupt
7 FPU Imprecise
8 Data Access

Table 2.3. Exception Priority

E eption ro essing

When an exception is recognized, the CPU completes the execution of the current instruction before it begins
exception processing except for the reset and error exceptions . Once the current instruction has completed,
the CPU copies the PSR into the EPSR, which saves the PSR value at the time of the exception. The CPU
then switches to the exception processing state by “freezing” or preserving the execution context in the
shadow registers which also precludes other exceptions from occurring , explicitly disabling interrupts, and
entering the supervisor mode. Instruction execution transfers to the appropriate exception-handler routine,
which is de ned by the exception vector associated with the particular exception. The exception handler
then processes the exception condition or performs the function initiated by the trap instruction. When
exception processing is completed, the CPU executes the instruction to restore the execution context
that was frozen the shadow registers and the EPSR , and then resumes normal execution at the program
location PSR value where the exception occurred.

A H PERmodule consists of one, two, or four HN 00 only CPUs along with either two or eight Motorola
M(C88200 or four MC8820 cache/memory management units CMMUs . Table 2. lists the Series 000
H PERmodule con gurations that are supported. Each MC88200 CMMU has a 16-KB data cache, and
each MC8820 CMMU has a 6 -KB data cache see page 16, “CMMU Data Cache” . A H PERmodule
is nothing more than a daughter board on which the CPU s and CMMUs are mounted each single board
processor SBP has one H PERmodule. A CMMU performs virtual memory management and caching
between a CPU and memory.

As shown in Figure 2.3, the CMMUs interface to the CPU data and instruction units through separate
processor buses P buses , and interface to memory through a multiplexed memory bus M bus . A CMMU
connected to a CPU instruction unit is called a code cache CMMU, and a CMMU connected to a CPU
data unit is called a data cache CMMU. Each CMMU has a unique 32-bit address for its control registers
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| Name | CPUs | CMMUs | Cache KB |

1P32 1 2 32
1P128 1 8 128
2P128 2 8 128
2P256 2 256

P128 8 128

Table 2. . H PERmodule Con gurations

in the Series 000 I/O address space. This address is the default after power up and cannot be changed by
software.

As shown in Figure 2. , each CMMU provides a data cache, a set of registers, and a memory management
unit MMU . These elements are described below, followed by discussions of address translation, data cache
coherency, and CMMU access protection.

The MC88200 CMMU has a 16-KB data cache, and the MC8820 CMMU has a 6 -KB data cache. Each
data cache is organized as four-way set-associative memory, consisting of 256 MC88200 or 102 MC8820

sets containing four lines per set with four 32-bit words per line. Each line has an associated physical address
tag and associated disable and status bits. Each set contains least recently used LRU information. Line

lls are performed by one burst read of four longwords from memory. Cache replacement is performed on a
LRU line basis.

The CMMU provides two memory update policies: copyback and writethrough. In copyback mode, CPU
updates are not written to memory until 1 an explicit cache ush command is issued, 2 a snoop hit see
page 2 , “Data Cache Coherency” causes a copyback operation, or 3 the set is full and there is a miss. In
writethrough mode, data is written to memory every time the cache line is modi ed. The memory update
policy has no meaning when an access is cache inhibited. There are two cases where transactions are cache
inhibited: when the address translation cache ATC entry used for address translation has the cache inhibit
bit set, or when a transaction includes an instruction. The CPU locks the data bus to memory during
an instruction, to ensure that additional bus tra c is blocked until both accesses a read followed by
a write are completed.

There are 26 CMMU registers that are used to con gure the CMMU dynamically to perform diagnostics
and to read the device status. The registers are accessible to any CPU not accessible to any users, even
the superuser that is connected to either the P bus or the M bus. The identi cation register contains
a programmable 8-bit number used to map the CMMU register page in the top 1 MB of the supervisor
address space see page 36, “Memory Management”, for a description of supervisor and user address space .
The two P bus fault registers are used exclusively by the local CPU, providing fault information related to
transactions initiated by the local CPU. The six system interface registers are control and status registers
that are used when performing various CMMU operations these registers also include the supervisor area
pointer register and the user area pointer register. The eight BATC write port registers are address loading

16
FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1
2.2. CACHE/MEMOR MANAGEMENT UNITS AND THE H PERMODULE

MC88100

INTEGER FLOATING -POINT UNIT
UNIT

A 4 A  SouRcE1BUS

SOURCE 2 BUS

DESTINATION BUS

\ 4 \ 4 A 4

REGISTER D]
FILE
SEQUENCER INSTRUCTION
DATA UNIT UNIT
AN AN

DATA DATA INSTRUCTION

ADDR
ADDR
(30 BIT) (30 BIT) PBUS

DATA
(32 BIT)

AV |

P-BUS CONTROL P-BUS CONTROL

DATA MEMORY MC88200 CODE MEMORY
CACHE | MANAGEMENT CMMUs CACHE MANAGEMENT
UNIT UNIT

M-BUS CONTROL M-BUS CONTROL

M BUS

v

Figure 2.3. H PERmodule Block Diagram

17
FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1
CHAPTER 2. HARDWARE ARCHITECTURE

| P BUS INTERFACE I
[ﬁ DATA

ADDRESS A
I T
¢ \val | \vAR |
BLOCK ADDRESS PAGE ADDRESS
TRANSLATION TRANSLATION SELECT DATA
REGISTERS CACHE CACHE
CACHE (PATC) |yl LOGIC || ypu
(BATC)
MMU

M BUS INTERFACE

Figure 2. . CMMU Block Diagram

ports for the block address translation cache BATC . The nine cache diagnostic port registers provide data
exchange points and status information on the data cache sets.

The MMU consists of a block address translation cache BATC , a page address translation cache PATC ,
and selection logic that are used to translate logical addresses to physical addresses. The two ATCs and
their corresponding entries are described here. A description of how the ATCs are used by the selection logic
to perform address translation is given on page 20, “Address Translation”.

The BATC is a 10-entry cache that contains translations for 512-KB memory blocks. The BATC is loaded
at boot time using the register BATC write port registers and is never changed. The blocks contain the
operating system kernel. Since these are high-use blocks, caching address translation at the block level
provides faster data cache access while avoiding ATC misses and their associated table searches.

The PATC is a 56-entry cache that contains recently used translations for -KB memory pages and is
maintained by CMMU hardware. A PATC entry is initially created by a translation table search see
page 20, “Address Translation Tables” . From then on, all translations for that page are performed by the
PATC until the entry is replaced or invalidated.

Each ATC entry consists of three parts: the logical address, the physical address, and the protection and
control information. The logical address corresponds to the memory address received from the CPU over
the P bus. The physical address is used to access the CMMU data cache or is placed on the M bus to access
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physical memory. When the CMMU receives a logical address over the P bus, it simultaneously searches all
ATC entries for a matching logical address. If a match is not found, CMMU hardware performs a translation
table search and creates a new PATC entry. When a match occurs, the CMMU replaces bits in the logical
address with the corresponding physical address bits from the ATC entry. This translated physical address
speci es a block or page of physical memory. The remaining bits in the P bus logical address are untranslated
these bits are an o set that speci es the exact data word in the physical block or page.

The control and protection information is applied to the memory transaction. Before an address is trans-
lated through an ATC, the CMMU checks the protection information. If the transaction con icts with the
protection e.g., a write to write-protected memory , the memory transaction is aborted with a fault, and
the translation is not performed. Control registers are updated with information concerning the fault. The
logical address, physical address, protection data, and control data format of the BATC and PATC entries
are described below.

lo k Address Translation Ca he Entries
The BATC contains ten 32-bit entries. Each BATC entry has the following format:

31 19 18 6 5 3 2 1 0
[ IBA | PBA [S|[WT[G[OI[WP][V|

LBA logical block address G global
PBA physical block address  CI cache inhibit

S supervisor mode WP write protect
WT  writethrough V  valid

The LBA eld contains the upper 13 bits of the logical address that maps to the associated physical address.
The PBA eld contains the upper 13 bits of the physical address of the memory block.

The S bit represents the value of the supervisor/user bit in the logical address. If the LBA matches the CPU
logical address but the value of the S bit is di erent, a BATC miss occurs.

The WT bit identi es the memory update policy see page 16, “CMMU Data Cache” . If the WT bit is set,
cache updates are performed using a writethrough policy if the WT bit is clear, cache updates are performed
using a copyback policy. If the CI bit is set, the WT bit is ignored.

The G bit value is sent to the M bus if the BATC mapped access requires an M bus transaction e.g., cache
miss or write-once . If the G bit is set, memory mapped by this entry is global if the G bit is clear, memory
mapped by this entry is local to this CMMU.

The CI bit a ects caching only in this CMMU. If the CI bit is set, data and instructions mapped by this
entry are not cached in the CMMU if the CI bit is clear, data and instructions mapped by this entry can
be cached in the CMMU.

The WP bit identi es whether the block referenced by the BATC entry is write protected. If the WP bit is
set, memory mapped by this entry is write protected if the WP bit is clear, memory mapped by this entry
can be written by the CMMU. A write to write-protected memory causes a write-protection violation.
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The V bit must be set for address translation to occur. If the V bit is set, this entry is valid if the V bit
is clear, address translation will not be performed using this entry in the BATC. Regardless of the value of
the V bit, other BATC entries and the PATC can still be used for address translation.

age Address Translation Ca he Entries

The page address translation cache PATC contains 56 6-bit entries. A PATC entry has the following
format:

5 26 25 6 5 3 2 1 0
[ LPA 3112 [ PFA 31-12  [S[WT |G| CI[ M| WP |

LPA logical page address G global

PFA page frame address CI cache inhibit
S supervisor mode M modi ed
WT  writethrough WP write protect

The S, WT, G, CI, and WP bits in a PATC entry represent the same information as the corresponding bits
in a BATC entry.

The LPA eld contains the upper 20 bits of the logical address that maps to the associated physical address.

The PFA eld contains the upper 20 bits of the physical address corresponding to the LPA. This value and
the status bits described below are loaded by the CMMU at the completion of a translation table search.

The M bit identi es whether a write access has been performed on the associated page. If the M bit is set,
the page mapped by this entry has been modi ed if the M bit is clear, the page mapped by this entry has
not been written. Once a write access is performed to any location on the page, the M bit remains set until
the entry is replaced or invalidated. The M bit may be set by the CMMU, but is never cleared.

CX/SX does not address physical memory directly, but manipulates physical memory through virtual ad-
dresses. This section describes the hardware that is provided to translate virtual addresses to physical
addresses, and describes how the CMMU performs an actual virtual-to-physical address translation.

Address Translation Tables

Virtual addresses are translated into physical addresses by performing a tablewalk through address trans-
lation tables. The translation tables describe the current logical-to-physical address mappings. As shown
in Figure 2.5, the translation tables are organized in a tree of three hierarchical levels: area, segment, and
page. There are two separate areas: user and supervisor kernel . Each area spans the entire 32-bit address
range GB and has an associated with it. An area descriptor contains the base address
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Figure 2.5. Translation Table Organization

of the segment tables and the area control bits. The proper area is automatically selected by the hardware
according to the mode of the CPU.

Each area is divided into 102 -MB segments. The information about a segment is kept in a

Each segment descriptor contains the base address of a page table as well as segment-level
protection and control information. All of the segment descriptors for a given area are kept in a single array,
called a . Each process has a user segment table and a supervisor segment table.

Each segment is divided into 102 -KB pages. Information about a page is kept in a . Each
page descriptor contains the address of a physical page frame into which the KB of virtual page address
is mapped, along with page-level protection and control information. All of the page descriptors for a given
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segment are kept in a single array, called a . The segment tables and page tables are kept entirely
in physical memory.

The CMMU performs an address translation by walking through the virtual address space tree, selecting
the appropriate area, segment, and page descriptors. As shown in Figure 2.6, each descriptor provides
information about the next level. An area descriptor points to the physical address of the appropriate
segment table. Bits 22-31 of a virtual address index to a segment descriptor in the segment table. The
segment descriptor points to the physical address of the appropriate page table. Bits 12-21 of a virtual
address index to a page descriptor in the page table. The page descriptor points to the physical address of
the appropriate page. Bits 2-11 of a virtual address are used as an o set within the page. Bits 0-1 are used
only by the CPU as a byte o set.

An area descriptor will always point to a resident segment table. However, an individual segment descriptor
may be marked “invalid” and have no associated page table. Page descriptors may also be marked “invalid.”
The CPU will generate an exception or when an invalid segment or page descriptor
is encountered during the virtual to physical translation see page 13, “Exceptions” . The page table or
physical page is then read into memory as described on page 39, “Memory Allocation and Deallocation”.

Every time a full tablewalk is performed through the translation tables, an entry in a PATC is created.
However, ATC entries are not updated automatically when the associated area, segment, or page descriptors
are modi ed by software. To resolve this problem, the CMMU hardware provides a mechanism to “invalidate”

i.e. remove entries from an ATC whenever a descriptor is modi ed or a context switch occurs. After an
entry has been invalidated, the next request for the virtual block or page will result in a full tablewalk, which
picks up the correct data from the descriptors.

Address Translation Algorithm

The MMU selection logic in the CMMU translates P bus virtual addresses to M bus physical addresses using
one of the two ATCs. The CMMU rst receives a CPU virtual address on the P bus. The MMU then
performs four functions concurrently:

1. The MMU performs an identity translation physical address  virtual address if the translation
enable bit is clear in either the supervisor area pointer register or the user area pointer register.

2. The MMU compares bits 19 31 of the virtual address and the supervisor /user bit to each logical block
address LBA entry in the BATC. If there is a hit, then the MMU creates a physical address by
concatenating virtual address bits 2 18 to the physical block address PBA from the BATC entry.

3. The MMU compares bits 12 31 of the virtual address and the supervisor/user bit to each logical page
address LPA in the PATC. If there is a hit, then the MMU creates a physical address by concatenating
virtual address bits 2 11 to the page frame address PFA from the PATC entry. If there is both a
BATC and a PATC hit, then the BATC entry is used for address translation.

. Data cache set selection is performed using bits 11 of the virtual address. The cache line is selected
at the end of address translation only if there is a hit in the data cache.

If the virtual address misses both ATCs, then the MMU creates a new PATC entry by performing a translation
table search, which involves traversing a two-level table of descriptors in memory to nd a new PFA. The
PFA is placed in the PATC along with its corresponding LPA and control bits. If the PATC is full, an entry
is replaced using a rst-in, rst-out FIFO scheme. Protection and control bits accumulated during the
table search are placed in the PATC with the newly created entry.
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The ATCs are searched again for an entry matching the upper bits of the virtual address. The address
translation process completes when one of the following two events occur:

1. An ATC hit or
2. Faulted termination of the table search done either
a immediately, as a result of
i. an invalid descriptor, or
ii. a privilege violation, or
iii. an M bus error, or
iv. a parity error, or
b at the end of a table search sequence as a result of a write-protection violation.

If the address translation is terminated as a result of a fault, the CMMU informs the processor that the
transaction has faulted and returns the faulting physical address in the P bus fault address register and the
fault type in the P bus fault status register.

To maintain coherency between cached and in-memory copies of data, the CMMU has an internal M bus
snooper. With the M bus snooping feature, the CMMU monitors the M bus transactions on all of the other
M bus devices. If some other device accesses the data that is modi ed in the CMMU cache, the CMMU
automatically assumes control of the bus and updates the data in memory. After this occurs, another M
bus device can access the newly updated data. The actions of the bus snooper are dependent on the type
of caching being used and the memory destination of the transfer local or global memory see page 25,
“Memory Modules” . Either write-through or copy-back caching may be used. An M bus snooper for the
HN 00 provides cache coherency for accesses to the local memory performed by the CPU. The M bus
snooper also provides I/O and CPU consistency to local memory for writethrough cache mode. An M bus
snooper for the HN 800 provides cache coherency for accesses to local and global memory.

Note that for HN 800 systems, local memory on one SBP can be accessed by a CPU on another board via
the frontplane see page 27, “Single Board Processor” . This type of local memory access is known as a
“foreign” memory access. Cache coherency is not maintained by the CMMU for foreign accesses. To work
around this cache coherency problem, CX/SX limits foreign local memory accesses to one case: a shared
memory region where the owner explicitly allows foreign accesses. This case is handled by CX/SX in a
manner that provides a software-maintained level of data cache coherency.

A CMMU provides level and write protection for the physical address space. The logical address space is
partitioned into two address spaces of GB each: supervisor and user. The CPU accesses either supervisor
or user memory according to its current operating state, and the CMMU automatically enforces the proper
access rights. Any segment, block, or page may be write protected or declared supervisor only.

The entries in the ATCs contain information that indicates the protection at each particular level of the
table structure see page 20, “Address Translation Tables”, for a description of address translation tables .
During a table search operation, the logical union of the protection attributes at each level of the table
structure is formed to protect the physical address. For example, if a segment or a page descriptor indicates
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write protection, then the physical address mapped by those descriptors is write protected. When the
CMMU detects a write transaction to a write-protected address, it aborts the transaction and signals a
write-protection violation data access exception to the CPU. Similarly, when the CMMU detects a user
access to a supervisor-protected address, it signals a privilege violation exception to the CPU.

Series 000 on-board hardware memory consists of local and global memory. Both local and global memory
are organized in -KB pages called page frames, and both support byte, word, longword, and line four
32-bit words transfers. Virtual addresses represented on local and global memory are viewed in groups
called memory pools.

The 16 MB of local memory can be provided on each SBP by a local memory daughter board. Access to this
memory by other than the local CPU disables local CPU operations while the memory reference is resolved.
The local memory can be left o an SBP, thus providing zero local memory.

Up to 256 MB of global memory can be provided in increments of 8, 16, 32, 6 , and 128 MB by a separate
system board. Global memory is equally accessible by all CPUs in the system. HN 00 global memory is
parity checked, and HN 800 global memory provides error-correcting code checks. The synchronization of
access to global memory is controlled by the SBP in slot zero.

Global memory is always contiguous and always starts at physical address 0. All local memories have unique
physical addresses that are not contiguous and will usually be located at much higher physical addresses
0x20000000 to 0x30000000 . The only exception is when global memory is not present on the system. The
software and rmware require that there be memory at address 0. On such a system, there must be only one
local memory, it must be usable by all CPUs, and the SBP will automatically relocate the local memory to
address 0.

Virtual addresses are represented on two kinds of physical media: primary memory and secondary memory.
Primary memory is constructed from random-access semiconductor media local and global memory . Pri-
mary memory is composed of one or more . Each memory pool is internally contiguous in the
physical address space, but di erent memory pools need not be contiguous with each other. There is exactly
one global memory pool, which is equally distant in terms of access time from all of the CPUs in the
system. By convention, the global memory pool begins at physical address 0. The remaining memory pools
are optional and are local memory pools, closer to some CPUs in terms of access time than others. All
primary memory is accessible from all of the CPUs in the system however, local memory accesses are faster
than global memory accesses, and global memory accesses are faster than foreign local memory accesses.
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Memory pools are established at boot time and are used in the kernel to make page placement decisions that
minimize the e ective access time to primary memory.

Secondary memory is constructed from direct-access magnetic media. Secondary memory may be used as
le systems to store nonvolatile data data that is retained across system boots , and is used by the kernel
as swap areas to free up primary memory.

A Series 000 SBP is illustrated in Figure 2.7. The HN 00 has one SBP and the HN 800 can have up to
four SBPs. Each SBP consists of the following elements:

CPU s

CMMUs

H PERmodule

local memory optional
console

ISE optional

HVME interface
interval timer
real-time clock
time-of-century clock
UART

memory bus interface

The CPU see page 9, “Central Processing Unit” , the CMMUs and the H PERmodule see page 15,
“Cache/Memory Management Units and the H PERmodule” , and local memory see page 25, “Memory
Modules” have already been described. The console is described on page 28, “The Console”, and the ISE is
described on page 29, “Integral SCSI Ethernet Controller”. The HVME interface communicates with local
and global memory, arbitrates the HVME bus, and supports asynchronous and synchronous transfers. The
memory bus interface arbitrates the memory bus and communicates with local and global memory.

The interval timer is a 6 -bit timer that can be written to or read from only by programs running as root.
The real-time clock consists of ve 16-bit timers, contained within an integrated circuit, that can be accessed
only by CX/SX. The time-of-century clock is a Mostek 8T02 timekeeper random access memory RAM
that keeps track of the year, month, day, hour, minute, and second in Greenwhich Mean Time it can be
accessed, displayed, or set only by a program executing in supervisor mode.

The Intel 82530 dual universal asynchronous receiver/transmitter UART supports two asynchronous RS232
serial ports for communications on the Series 000 architecture the transmission rate of the terminal port
defaults to 9600 bps at power-up. For the HN 800, there is one UART per SBP i.e. for two SBPs there are
four ports .

26
FINAL: 15 September 1993



Final Evaluation Report: Harris Computer Systems CX/SX Release 6.1.1 and LAN/SX Release 6.1.1

SINGLE BOARD PROCESSOR

2. .

AHONIIN

vao1o

008YNH ¥3d dNO4 OLdN 00PNV d3d INO  «

» J0SS300dd AdvOd 3TONIS

FOVH4Y3LINI ANV IdLNOYS

snaviva
TYNINEL
370SNOD
L
%0070
NOUd3 VN 4:_ AMNINGD Y2010 HINIL AHOWIN
soaw || Fwva || avadain Tv001

T

T T 1

S

219071

D> Paw &

21901
H3T71041NOD

0/1

y

301A3A
o/l

SNd 3INAH

SNdss3yaav HOLY
» viva
HOLV1
Sss3daav
SNd N
NININD NNIND

L " ]

Ndo

FTNAOWHIdAH

Figure 2.7. Elements of a Series 000 SBP
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The console consists of a predetermined CPU, terminal and UART port, an interrupt, and a 6 -KB-by-
32-bit erasable programmable read-only memory EPROM . The predetermined CPU, called the console
processor, emulates the console by executing console code from the EPROM. The console logic is used to
boot CX/SX, con gure the system, run diagnostic programs, halt the system, and monitor the operation of
the hardware by means of the console terminal.

The system will not boot if the predetermined CPU, UART, or terminal is unavailable. If the system is
booted and one of these components becomes unavailable, the system will be in an unde ned state. There
is a switch on the Series 000 control panel that enables remote console functionality through the UART,
but this functionality is not allowed to be utilized when the system is run in the evaluated con guration.

When the console terminal is not being used in con unction with the console logic, it acts as a user terminal.
However, certain commands those beginning with tilde are still recognized as console commands from this
terminal. All commands issued at a user terminal are ltered through the console processor device driver
when this device driver detects a tilde command from the predetermined console terminal, the console
processor branches to console code. Since there is no means for disabling the console, the console terminal
must be physically protected to prevent unauthorized users from issuing console commands e.g., halt the
system .

The console processor executes diagnostic programs from disk or tape. It loads the boot program from disk
or tape, and then the operator may load and execute a diagnostic program by specifying the name of the
program at the boot lename prompt. The console processor does not have permanent storage for diagnostic
programs.

When the hardware is rst powered up, all of the CPUs begin by branching to EPROM/console code
and executing a sequence of self-checks and system-checks e.g., reset CPU registers, CMMUs, and system
memory map . The console processor then supervises the initialization of the system while the other CPUs
respond to the console processor s instructions. The console processor communicates with other CPUs by
clearing a spin lock, passing a data control block DCB , and waiting for the spin lock to be reset. A DCB
contains a command and possibly data. Each CPU executes the desired command and then sets its spin
lock to indicate completion. The console processor eventually prints status messages to the console terminal
as it moves toward booting CX/SX. Once CX/SX is booted, the console terminal acts as a user terminal.

Devices controllers and peripherals communicate with the system through the HVME bus or the VME bus.
These buses are, in turn, connected to the SBP s HVME interface see Figure 2.1 . Devices are accessed
through memory mapped input/output I/O . Control register and memory bu er addresses on devices are
mapped into the virtual address space of the operating system. When data is transferred to a device, the
operating system writes to the virtual address. The write operation is translated by the hardware into a
HVME bus transfer.

Devices use physical memory addresses when transferring data. Data transfer operations are performed
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between a bus master and a slave. The master places address, data, and control information onto the bus.
The appropriate slave retrieves the address and input data and acknowledges the bus cycle.

This section describes the devices that are part of the evaluation. Communications boards and I/O controllers
are discussed rst, followed by peripheral devices such as disk drives and terminals.

CX/SX and LAN/SX use a number of communication boards to interface with networks. The communi-
cation interfaces are the ISE, the Verdix Secure Local Area Network VSLAN NSD board, the Excelan
Ethernet board, and the Interphase 207 Eagle Ethernet board. All interfaces except the ISE communicate
with CX/SX and LAN/SX through the HVME bus. The following sections brie y describe each board s
functionality, and how the board interfaces with CX/SX and LAN/SX.

Of the seven protocol layers de ned in the Open System Inter onne tion OSI - asi Referen e
Model 59, the boards operate at the Physical and the Data Link Layers, OSI layers 1 and 2, respectively.
The boards use Ethernet or IEEE Standard 802.3 protocols to handle the physical layer and a portion of the
data link layer communications. IEEE 802.3 de nes a protocol to establish an unreliable communications
path between two nodes on a broadcast network. Unless otherwise stated, the term refers to both
Ethernet and IEEE 802.3.

Integral SCSI Ethernet Controller

The integral SCSI Ethernet ISE is a combined small computer system interface SCSI /Ethernet daugh-
terboard that interfaces to CX/SX s CPU through a motherboard expansion connector. The daughterboard
provides the CPU with access to an Intel 82596DX local area network LAN coprocessor for interfacing to
an Ethernet network, and with access to an NCR 53C700 I/O Processor for SCSI 1 support. The daughter-
board interfaces to the SBP through port 1 and provides functionality to the CPU without using an HVME
slot. The daughterboard has direct access to CX/SX s local bus through the port and can only transfer data
to and from local and global memory. One daughterboard per SBP can be con gured in a CX/SX system.

The Intel 82596DX LAN coprocessor is capable of direct memory access transfers to and from local and
global memory. The daughterboard provides the CPU access to its registers. The daughterboard also
forwards interrupt requests generated by the 82596 to the CPU.

The NCR 53C700 I/O processor allows synchronous SCSI transfers of up to 6.25 MB per second. It contains
a SCSI core for data transfer, a direct memory access DMA component for bus control, and a processor
allowing DMA instructions and SCSI instructions to be fetched from the local memory for fast SCSI I/0O
operations.

Verdi Network Se urity Devi e

CX/SX uses a Verdix Network Security Device NSD model NSD-VME-200 to interface with the VSLAN.
This NSD model operates as a memory device on the VME VME bus and has the capability to interrupt
the VME bus. The VME bus also has the capability to interrupt the NSD. The VSLAN uses Ethernet
protocols to handle the physical layer and a portion of the data link layer communications.
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The board is one of the evaluated models from the evaluation of VSLAN 5.0 see Final Evaluation Report
Verdi Corporation VSLAN 5.0 2 for a more detailed description of the NSD and how it is used in
the Verdix VSLAN . Up to two NSDs are supported per system. An NSD cannot function until a datakey
a uniquely programmed portable memory device, programmed to work with a given NSD is inserted into
the NSD s key receptacle. The NSD contains circuit components grouped into ten units:

the processor unit - 80286 processor

triple port RAM - eight 6 KB banks of RAM grouped into three blocks: 38 KB local RAM, accessible
only to the CPU 6 KB host/NSD shared memory 6 KB network dual port RAM, accessible to the
network interface unit and the CPU

EPROM - 6 KB of program memory containing all the NSD software

function select and ready unit - controls the processing of other units on the NSD

timer and interrupt unit - contains the programmable timer and programmable interrupt controller
bus bu er unit - used to bu er the local address bus, data bus, and control signals

ciphering unit - performs encryption and decryption for the VSLAN

network interface unit - consists of the 82586 LAN coprocessor and a SEE 80023 Ethernet Data
Encoder. This unit performs the exchange of data between the 6 KB network RAM and the network.
This unit also handles link management algorithms.

host interface unit - attaches to the host bus and allows the host to access the shared NSD memory
key interface unit - interfaces to the datakey unit, and consists of a portable memory device the
datakey and the Datakey KCPKA16KS Keyceptacle

E elan Ethernet Interfa e

The Excelan Ethernet interface can be either the EXOS 202 or EXOS 302 intelligent Ethernet controllers.
Each board operates as a bus master for access to host memory via the HVME bus. Each board has an Intel
80286 microprocessor, an Intel 82586 Ethernet controller, local programmable read only memory for 80286

rmware, an interrupt controller, local RAM, and a host bus interface. The EXOS 202 board contains 512
KB of local RAM and the EXOS 302 can have 512 KB or 1 MB of local RAM. The EXOS 302 board is fully
compatible with the EXOS 202 board.

Interphase 207 Eagle Ethernet Interfa e

The 207 Eagle Ethernet controller is a VMEbus LAN controller. Standard Ethernet networks are supported.
The 207 communicates with the host computer through shared memory structures and VMEbus vectored
interrupts. The primary shared control structure is located in an on-board 20 8 byte dual-ported RAM.
The location of this RAM in VMEbus Short I/O memory space is selectable by DIP switches. Additional
shared memory data structures are located in host RAM. Ethernet I/0 signals are directed through a DB15
connector to a standard 802.3/Ethernet transceiver cable.

The Eagle includes a 68020 microprocessor and implements Ethernet protocol levels 1 and 2. The board
contains the following:

an onboard 68020 microprocessor operating at 16 MHz
128 KB of zero-wait-state scratchpad RAM

512 KB of quad-ported communication data bu er RAM
6 KB of EPROM program storage
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32 bytes of nonvolatile RAM for Ethernet node address
a real-time executive in EPROM

drivers for onboard hardware in EPROM

a BUS packet interface to the VMEbus

gather capability

CX/SX and LAN/SX make use of a number of I/O controllers to interface with devices. The I/O controller
interfaces are the HSA, the HPS controller, and the ISE described in Section 2.6.1, “Network Communication
Boards” . The HSA and HPS controllers communicate with CX/SX through an HVME bus. The following

sections brie y describe the HVME bus, each controller s functionality, and how the controller interfaces
with CX/SX.

Harris VME us

The HVME bus is a backplane based on Motorola s VME bus speci cation. The HVME bus has up to 21
slots and is designed to be a superset of the standard VME bus. Most boards designed to be used on a VME
bus can be used on an HVME bus with the addition of an adapter. HVME s main extensions to the VME
bus are larger board size, more power pins, fast synchronous burst mode, and bus parity. A typical transfer
of data involves one device the master initiating a transfer with another device the slave .

The HVME backplane provides 16, 2 , or 32-bit addresses to boards. It accomodates up to 16 boards, with
each HVME board addressed by a combination of the slot number in which the board resides and a module
identi cation number assigned to the board type. A VME board address is selected by onboard switches or
umpers.

Three categories of data transfers can take place: asynchronous, synchronous, and bus errors. For asyn-
chronous transfers the master indicates whether it is transferring data to the slave or receiving data from
the slave. The HVME bus has the capability of transferring data synchronously where transfers occur to
or from sequentially incrementing addresses. Asynchronous transfer rates reach up to 20 MB per second,
while a synchronous transfer can reach transfer rates of 0 MB per second. If an error occurs during a data
transfer and the slave detects the error, it can assert signals indicating an error occurred. If the master
detects an error it can invalidate the data received and report the error to the processor, or ust wait for
processor software to timeout.

Harris SCSI Adapter

The Harris SCSI adapter HSA assembly can control up to six intelligent, high-capacity devices that have
SCSI interfaces. The board has been designed to work most e ciently with the model RA5830 see Ap-
pendix A, page 195 disk drive, but can also interface with other SCSI devices. The HSA is a microcontroller-
based control board that uses FIFO bu ers to transfer data to and from a device. The HSA communicates
directly with the device controllers using a SCSI bus interface, and communicates with the CPU via the
HVME bus.
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High erforman e Serial Controller

The high performance serial HPS controller is a VME bus interface board that provides 16 RS-232 serial
ports and one parallel port. Baud rates up to 38, 00 are supported on the serial ports. The controller uses
a microprocessor for control and contains two universal asynchronous receiver-transmitters, 256 KB of local
RAM, 6 KB of local EPROM, and 16 KB of dual-ported RAM. The dual-ported RAM can be accessed
by both the on-board rmware and CX/SX through the HVME bus. The HPS board is used to control
access to serial devices such as terminals and to parallel printers. RS-232 cables and the parallel cable are
connected directly to the HPS board. The board communicates with CX/SX via the HVME bus.

The evaluated con guration includes peripherals conforming to the SCSI speci cation 1 and to the RS-232
speci cation. The SCSI peripherals include disk drives and magnetic tape units. The RS-232 peripherals
include printers and terminals. The devices included are described below.

Disk Drives

Two series of disk drive models M262xSA and M226xS/H from Fu itsu are included in the evaluated
con guration. The exact model numbers and sizes can be found in Appendix A, page 195. Both series
have interfaces based on the ANSI SCSI standard see Ameri an National Standard for Information
Systems - Small Computer System Interfa e SCSI 1 . A disk drive transfers data to and from
CPU memory through the HSA or the ISE controllers. Each disk drive has an embedded disk controller.
The M262xSA series are 3.5 inch drives providing up to 5 MB per second synchronous data transfers. A
2 0-KB data bu er is used to provide this data transfer rate. The di erent models in the M262xSA series
provide di erent storage capacities, with the largest being 520 MB.

The M226xS/H series are 5.25 inch drives providing up to MB per second synchronous data transfers. This
series has a 6 -KB bu er, and the largest model provides 1 GB of storage capacity.

Magneti Tape Units

Three magnetic tape units supporting the SCSI speci cation are included: a streamer tape drive from
StorageTek, a cartridge tape drive from Cipher, and a cartridge tape drive from Exabyte. Each drive
contains an embedded controller. The streamer tape drive is model 991 and has a self-loading tape system
which accepts standard reel sizes from six to 10.5 inches diameter. Up to 125 inches-per-second tape speeds
can be reached and a data density of up to 6350 bits-per-inch is available. The Cipher model ST150S/90
cartridge tape drive has high-speed data bu ers, supports a burst transfer rate of up to 2 MB per second,
provides a 6.5 MB per minute data rate, supports IC150 recording standards, and has a formatted data
capacity of 150 MB. The Exabyte cartridge tape drive model EXB-8200 uses 8 mm cartridge tapes, has from
256 MB up to 2,500 MB of formatted data capacity per tape, and has data transfer rates on a SCSI bus of
up to 1.5 MB per second. A tape drive transfers data to and from CPU memory through the HSA or the
ISE controllers.
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rinters

Two Printronix line printers and one Dataproducts laser printer are included in the evaluated con guration.
The printers interface with CX/SX via the HPS controller.

The printers from Printronix are either pedestal printers series P6000L or oor cabinet printers series
P6200L . Each series has 00-line-per-minute and 800-line-per-minute models. The Printronix printers create
graphics and characters by printing an entire dot row at one time. The printers can use either a parallel
interface or an RS-232 serial interface.

The Dataproducts L R-1230 model printer is a 12-page-per-minute laser printer that can emulate three
printers: the Diablo 630 ECS/API Daisywheel printer, the Epson FX-80 Dot Matrix Printer, and the HP
LaserJet+ Laser printer. The printer uses ASCII control codes and escape sequences for the various printing
functions supported. The control codes and escape sequences are sent to the printer by the TCB. The HPS
printer must store all the data for an entire page until the page is to be printed.

Terminals

The only terminal allowed in the evaluated con guration is the Wyse W -150, an ANSI-compatible monochrome
terminal. It has a 26-line display along with seven pages of display memory. The terminal responds to con-
trol codes and escape sequences received from the keyboard or from the CPU. The control codes and escape
sequences control such things as the positioning of the cursor, the status of the display memory, and screen
characteristics.
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This chapter discusses the software architecture of CX/SX. The following topics are discussed in individual
sections:

software architecture overview
memory management
process management

le management
input and output
interprocess communication
network subsystem
audit subsystem
printer services
tape subsystem
mail subsystem
batch obs
system startup/shutdown
trusted processes

The CX/SX operating system is based on Harris CX/UX, which is a port of American Telephone and Tele-
graph AT T UNIX System V and Berkeley Software Distribution BSD .3. The CX/SX architecture
consists of three conceptual levels: hardware, kernel, and user. The hardware level is the lowest of these
and consists of the physical devices of the system. This level is discussed in detail in Chapter 2, “Hard-
ware Architecture”. The kernel level provides the system services that are available to user-level processes.
These services include memory management, process management, input/output I/O management, le
management, interprocess communication IPC , and networking support. Networking services are provided
by LAN/SX software. The user level is the highest in the architecture and can be thought of as a collection
of trusted and untrusted user processes.

Two abstractions are of ma or importance within the CX/SX operating system: les and processes. The
kernel implements these abstractions through le and process management. CX/SX le management provides
data storage, retrieval, and I/O capabilities. Communication with hardware devices is done through low-
level device drivers that implement I/O service on a per-device basis. CX/SX process management features
implement process synchronization, IPC, memory management, and process scheduling. File and process
management within CX/SX are not strictly independent services, as each relies on i.e. makes calls to the
other. For example, these services interact when loading an executable le into memory.

The CX/SX kernel is bounded above by the system call interface. System calls provide the user interface
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to services implemented within the kernel, and are the system-de ned entry points to the operating system
for user processes. System calls are the means by which a user process requests a service or resource from
the system. At each system call entry, the arguments provided by the user process are recorded into kernel
space and then checked by the system. If the arguments pass these checks, further processing of the system
call by the kernel can occur. When this processing is completed, the processor will transition back to user
mode before returning execution control back to the calling process.

A more sophisticated use of system calls is provided by system libraries. These libraries are user-level
code modules that can be linked with user programs to provide often-used features. Library modules can be
thought of as implementing, through a series of system calls and executable code, a higher degree of function-
ality than that provided by individual system calls. The system libraries support program development on
CX/SX, but are not part of the trusted computing base TCB interface. There are no shared, dynamically
linked libraries included in the evaluated con guration.

It is the kernel and its hardware control software that are responsible for communication to and from the
actual hardware. Device interrupts are processed by , or special functions within the
kernel. Data to be written to a physical device is processed by a device driver, which signals the device
through the interrupt handlers when data is ready to be transferred.

The CX/SX operating system can run on a multiple CPU platform. CX/SX provides a and

multiprocessing environment. For CX/SX tightly coupled means that a single copy of the kernel,
residing in global memory, is shared by all CPUs and controls the operation of the entire system. Symmetric
in this case means that all CPUs share essentially the same software responsibilities and each has access
to I/O devices. CPU symmetry allows for exibility in the assignment of interrupt handling among the
con gured CPUs. The one exception to CX/SX CPU symmetry is the boot CPU, which handles singular
responsibilities such as booting the system and maintaining the system clock.

The CX/SX kernel is multithreaded, allowing processes running on di erent CPUs to execute in the kernel
simultaneously. The preemption of processes executing in supervisor mode is allowed. Critical code sections
and data structures within the kernel are protected by spin locks and semaphores, which enforce mutual
exclusion for these resources. Spin locks are essentially a code loop that repeatedly tests a semaphore
guarding some resource until that resource becomes available. Thus, a spin lock serves to halt a process
in place, without causing it to block, until a time when it can safely proceed. System semaphores are
implemented by an atomic “test and set” machine instruction on CX/SX in order to provide a mutual-
exclusion primitive. System semaphores are distinct from System V IPC semaphores discussed on page 58,
“Semaphores” .

LAN/SX provides the capability to network a CX/SX host with other hosts. LAN/SX is an implementation
of the Transaction Control Protocol/Internet Protocol TCP/IP suite using an Ethernet interface. The
networking subsystem is implemented in three layers: the socket layer, the protocol layer, and the device
layer. The socket layer provides an interface for local processes. The protocol layer provides transport and
internetwork communication services. The device layer provides device-to-device communication services.

This section describes how the kernel manages virtual memory, and in particular, how the kernel makes use
of the memory management hardware described on page 20, “Address Translation Tables”. As described
on page 10, “Central Processing Unit”, a CPU will always be executing in one of two modes: user mode or
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supervisor mode. The virtual address spaces consist of -MB segments that are partitioned into separate
areas, called . A region consists of virtual pages that map user and supervisor spaces to physical
memory. User address space, supervisor address space, and regions are described in more detail in the rest
of this section.

A user address space contains the regions that are accessible to a process while the CPU is in user mode. At
a minimum, the user space includes the program text, data, and stack regions. Shared memory regions may
also be bound into a process user space. A user s stack will always begin at a particular virtual address in
high memory and grow toward lower memory. The space above the user stack is not used. The remaining
regions may be located anywhere in the user space, but usually start with the text region at address 0 and
other regions on top.

The user address space is divided into 102 -MB segments. Each region will occupy some whole number of
segments within the address space. To enforce the nonoverlapping of regions, a segment can only be used
by at most one region.

Both the data region and the stack region can expand. The data region expands upward as a result of
the system call. The stack region expands downward through natural stack growth. In both cases the
expansion may require the absorption of the next contiguous segment. If the next contiguous segment is
already in use by a di erent segment, the expansion will not be allowed and an error will be returned.

Supervisor address space includes the kernel text and data, the hardware control registers, and the

see page 2, “The u-area” and kernel stack for the current process. The kernel text and data and the control
registers are shared among di erent processes. The u-area and kernel stack are private to each process. The
u-area and kernel stack are located in one segment called the . Only the last four pages of
this segment are valid these pages remain resident as long as the process exists. The kernel stack occupies
two of the valid pages. The stack always begins at a particular virtual address in high memory and grows
toward lower memory. Following the stack is a read-only page used to catch kernel stack overrun conditions.
This physical page is actually the same for every process. The last valid page in the u-area segment contains
the u-area itself.

The user address space of a process is logically partitioned into separate regions. A region is a contiguous
unit of the virtual address space of a process that can be treated as a distinct entity. A region may be shared
or private and consists of text, data, stack, or shared memory space. Typically, if several processes execute
the same program, they would share one copy of the text region. Similarly, multiple processes may cooperate
to share a memory region. The data and stack regions are always private. By default, every process has at
least one text, data, and stack region.
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One or more regions may be bound to local memory see page 25, “Memory Modules” either by adminis-
trators at boot time or by users using the system call. The scheduling software ensures that a
process with one or more regions bound to a local memory executes on a central processing unit CPU on
the single board processor SBP containing that local memory for the duration of the process.

For each active region in the system, a is allocated from a global . In addition, each
process has a per-process region table, called a , that consists of . Together,
the region table and the pregion table entries identify, for a given process, the following information: where
a region is located in primary memory, the virtual address range mapped to the region, and the protection

attributes for the region. Each region has a list of pointers to page tables consist of
that contain information about each virtual page associated with that region. Associated with each
page table is a DBD tables consist of that give the

location on disk where a copy of the corresponding page is found. The region table and structures, pregion
tables and structures, page tables and entries, and DBD tables and entries are described below.

Region Table and Stru tures

The region table consists of an array of structures that are global to the system. A region structure
contains all of the control information associated with a region. A region structure includes the following
information:

various attributes of the region and the state of the region e.g., loaded in local memory, shareable,
read-only, bound to primary memory

the size of the region in virtual pages

the number of pages loaded into primary memory

the number of processes referencing the region

the region type private, shared text, or shared memory

the number of processes requesting that the region not be swapped out pages of locked regions will
not be swapped out by the page stealing process

the pointer to the memory pool where the region resides local or global memory

the location of page tables associated with this region

the pointer to the vnode see page , “File Management” de ning the location of le blocks associated
with this region

the semaphore used to synchronize access to the region structure

region Tables and Stru tures

The structure manages the association of regions to a process. Each process manages a table of
pregion structures that describe the regions that are attached to the process. The pregion table is sized to
allow the maximum number of regions per process. The pregion structure is necessary in addition to the
region structure because a shared region may start at a di erent virtual address in each process sharing
the region, and each process may have di erent permissions allowed on the region. The pregion structure
contains the following elds:

the pointer to the attached region s structure
the virtual address at which the region is attached
indicator showing whether the region is read-only and whether it is cached
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the type of address space for the region text, data, stack, or shared memory

age Tables and Entries

Each region has a list of pointers to page tables. Page tables consist of page table entries or
that contain information about each page for the region. Each page table entry contains the physical page
frame number as well as control and access bits for the page. There is at least one page table per region.

Page tables are the common point at which software memory management and hardware memory manage-
ment coordinate. The kernel establishes pointers from a region structure to the needed page table s , and
then attaches the region to a process by mapping the page table virtual addresses back to the user address
space segment table. Then, when the hardware does a virtual to physical address translation, it traverses the
established segment table and page table s to get to the appropriate page descriptor see page 20, “Address
Translation Tables” . The kernel gets to the page descriptor by going through a structure to get
to the attached structure, which in turn points to the list of page tables associated with the region.
The following page table entry elds are of most importance:

the physical page frame number

a eld showing whether the page is locked in memory and, thus, cannot be swapped out

the copy-on-write bit set by the kernel

a eld showing whether the page has been modi ed

a eld showing whether the page has been referenced

a eld showing whether the page can be written

a valid bit that is set by the kernel when a physical page is allocated for this virtual page if this bit is
not set, a page fault is generated when the page is accessed

Disk lo k Des riptor Tables and Entries

Associated with each page table entry is a . The DBD de nes the state of
the associated page and the disk block number if a valid copy exists on program disk or swap storage. The
structure for a DBD consists of the following elds:

the status of the page no copy of the page on disk, a valid copy of the page resides in the swap area,
a copy of the page resides in the program executable le, or it is a demand-zero page

the swap area index for pages located on the swap area

the block number index into a le system

A combination of demand paging, page stealing, and process swapping is used to manage the allocation and
deallocation of physical memory. Pages are brought into memory only as they are needed. When the amount
of available global memory falls below a constant de ned at boot time, resident pages that have not been
recently modi ed or referenced are copied to secondary storage and the physical space is returned to the
free list. If there is insu cient memory to support the process load, the entire address space of a process is
swapped to secondary storage and the memory is freed.
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As noted earlier, regions can be bound to local memory. If local memory becomes full, the excess simply
spills over into global memory. However, when global memory falls below its lower limit, both local and
global memory pages are freed as appropriate.

Demand- aging

Demand-paging is a technique where the allocation of physical memory is not performed until it is actually
needed. As a result, only a small portion of an executing process may actually be in primary memory. As a
process executes instructions or references data in pages not resident in primary memory, page faults occur
and the pages are read in from secondary storage to primary memory.

There are three types of pages that can be read in when a page fault occurs: demand 1l, demand zero,
and copy-on-write. A is initialized by reading in a copy of the page from disk when a fault
on that page occurs. A page is initialized to all zeros when a fault on that page occurs. A

page is a read-only page with the copy-on-write bit set in the page descriptor. Copy-on-write
pages allow the safe sharing of memory, such as common text, and delays the copying of pages until it is
necessary. When a process attempts to write a page marked copy-on-write, a new private copy of the page
is given to the process.

age Stealing

Page stealing is performed when the amount of available primary memory is below a low-water mark, and
pages are freed until the amount of available primary memory is above a high-water mark. Page stealing
is performed by , which is a collection of processes running simultaneously, one on each CPU. The
process running on the boot CPU is called vhand master. The processes on all other CPUs are called vhand
slaves. When the amount of available primary memory drops below the low-water mark, the vhand master is
activated and awakens the vhand slaves. Once synchronized, all of the vhands walk the list of active regions
and examine each region s page tables, looking for pages that have not been recently referenced. All vhands
master and slaves update the appropriate kernel data structures and statistics themselves. These data
structures are protected with kernel semaphores. Once the vhands mark enough pages that may be freed,
all vhands synchronize at an ending point. The vhand master actually frees the pages and writes dirty pages
out to swap space, while the vhand slaves go back to sleep so that other processes can run again on those
CPUs.

ro ess Swapping

Under certain conditions, the process load of the system may result in excessive page stealing. It is some-
times more e ective to swap out entire processes, freeing up their memory resources. The process is
responsible for swapping processes in and out of primary memory. The process will be awakened only
when a process enters the XBRK state see page 1, “Process Management” because of insu cient available
physical memory. The following processes may not be swapped out:

kernel daemons
locked-in-memory processes
exiting processes

processes doing physical I/0
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processes preempted while in the kernel since they may have locked semaphores

Of the allowable processes, prefers to swap out the longest sleeper. If a “long sleeper” is not found, the
four “biggest” processes are determined by the number of each process s resident pages. Of these processes,
the one that has been in memory the longest is swapped out. itself will not perform the actual operation
of saving a process s pages to the swap area and removing them from primary memory the page stealer
process is invoked to perform this step.

Of the processes ready to run, chooses the best process to swap in based on the amount of time that
the process has been swapped out, the amount of memory that the process requires, and the process s
value. “Swapping in” a process is actually a misnomer a process chosen to be swapped in has its pages
gradually brought back into memory as they are accessed and page faults occur similar to the demand
paging activity that happens as a program is rst invoked .

A process is a program in execution. A process has two address spaces, user and supervisor, and three
structures , , and to maintain information about the process. The user address
space is accessible from both the user and supervisor states of the CPU. The supervisor address space is
available only when running in the supervisor mode of the CPU, as described on page 10, “Central Processing
Unit”. Each address space is composed of memory regions. The user address space has a text region, data
region, stack region, and possibly shared memory regions. Each region contains one or more segments. The
supervisor address space contains segments for kernel text and data and the hardware control registers. It
also provides a mapping to a and kernel stack for each process. The kernel stack and the process
share a segment. A process is identi ed by a process ID stored in the structure.

The following sections will describe the process structures used to store the process state, and then discuss
process scheduling, creation, deletion, hierarchies, and signals.

The structures used to store the state of a process are the structure, the , and the

structure. The is unique to each process and is a segment in the supervisor address space at xed
virtual addresses. It contains a pointer to the structure. The structure is in the kernel data
area. The structures are allocated from a xed-size table created by the kernel at system startup.
The structure contains a pointer to the structure. The credential structure is allocated
from the kernel data segment and contains the access control attributes of the process. When a process
context switch occurs the memory management structures are used to map the new process s into
the expected location.

The pro Stru ture

The structure contains eight categories of information:

Scheduling - process priority, CPU utilization
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Identi cation - process ID, parent ID, pointer to the structure

Execution State - process state for scheduling

Signals - signals pending and actions to take

Multiprocessing - the process s CPU bias and current CPU

Resource Accounting - utilization of system resources

Timer Management - time left before timer expires

Memory Management - pointers to the pregions table and page table the pregions are discussed in
detail on page 37, “Regions”

The u-area

The structure contains

a copy of the user and kernel mode registers for context switches
the state related to system calls

the process descriptor table see page 51, “Descriptors”
accounting information

resource control information

a per-process execution stack for the kernel

a pointer to the structure

The redential Stru ture

The structure contains

the number of processes referencing this structure
e ective user identi er EUID

real user identi er RUID

e ective group identi er EGID

real group identi er RGID

saved user identi er SUID

saved group identi er SGID

process group list

Each GID also contains a sensitivity label. The use of the these attributes will be described in Section 5.2.1,
“Sub ects”.

The process state is stored in the structure and is one of the following:

SLEEP - waiting for an event
RUN - running or waiting for a CPU
IDL - intermediate state
OMB - intermediate state
STOP - process stopped or being traced
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XBRK - process is waiting for memory

A process is typically either in the RUN or SLEEP states. A process is in the IDL state only while rst being
created, and in the OMB state or a zombie process only after exiting. A process in the STOP state has
been stopped by a signal or the parent process. A process in the XBRK state has requested more memory
than is currently available and is waiting for more to become available.

A process in the RUN state is ready to run on the CPU. The processes with the highest priority share the
available CPU resources on a time-slice basis. A maximum process priority is set by the system administrator.
A user may ad ust the process priority downward. If an interrupt causes a high-priority process to enter the
RUN state, the time-slice of a lower-priority process may be ended for the high-priority process to run. This
is true, in general, even if the lower-priority process is executing in the kernel. Operations that need to be
atomic are protected by kernel semaphore locks.

Each process runs on only one CPU at a time, but may switch from CPU to CPU on each context switch.
CX/SX attempts to balance the system load through its assignment of processes among available CPUs.
Applications can exert some control over their CPU assignments by setting a CPU “bias.” This bias is
represented as a mask that speci es the set of CPUs to be considered when that process becomes ready to
run. A process may migrate among the CPUs in its bias at each execution interval. Processes may be in
memory or swapped out. Swapped out processes reside on disk.

A process is created by the or system call. The process executing the is called the parent,
and the process created is the child. These system calls cause a new structure and to be
allocated. The reference count of the structure is incremented. Any change to the

structure will cause a copy of that structure to be created for the process changing its attributes. A process
ID is assigned to the child process and its memory management structure is set up to match that of the
parent process. The regions are marked as copy-on-write see page 0, “Demand-Paging” and duplicated
only when the child writes to the page.

Typically, after a process is created with the system call it almost immediately executes the system
call. This will cause the memory of the process to be replaced by the executable le that was ed. If
the executable le has the setuid or setgid bit set in its attributes, then the process will alter the IDs it is
using, as described on page 117, “Discretionary Access Control”.

Processes terminate either voluntarily, through the system call, or involuntarily, as the result of a signal
as described below. In either case the process s virtual memory resources are removed, open les are closed,
and information about the process is sent to the parent process. The process then enters the OMB state.
The process will have its structure reallocated after the parent process has received the information.
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The parent-child relationship described under process creation is not the only way in which processes are
associated into groups. Processes associated by a chain of parent-child relationships are processes.

are another method used to associate a group of processes. A process group is de ned by
the process ID PID of the . The process group is copied when a process is ed.
Processes created for a user login by the process see page 12 , “Identi cation and Authentication”
have their process group IDs set to the PID of the new process. A is a collection of process
groups. Process sessions also use the PID of the session leader as the session ID and propagate it ust as
with group IDs.

Process groups are used for ob control. The system call, for example, can be used to send a signal to
all processes within a process group sub ect to the same restrictions as ordinary signals, described below .
The process session is used to control access to the terminal. The process sets the terminal session
ID when preparing to run . Only processes with a session ID identical to the terminal may use it as a
controlling terminal. Process groups and sessions are manipulated by shell programs and maintained by the
TCB, but are not depended on by the TCB.

Signals are a simple communication mechanism. A signal is sent from a process or from the kernel to one or
more other processes. The receiving process responds by performing some action based on the signal type.
For each signal type a process may ignore signals of that type or execute a signal handler for that type.
Signals that are neither handled nor ignored will cause the process to exit. One signal, SIGKILL, always
causes the process to exit. Many signal types have meanings based on kernel use or convention. While the
kernel always conforms to these conventions, processes may use any signal except SIGKILL and SIGSTOP
for arbitrary communication. Signals may be sent only when the sending process s RUID or EUID matches
the receiving process s RUID or EUID.

CX/SX organizes data in le systems with a hierarchy of directories and les organized into a tree structure.
The tree structure is provided by a virtual le system that implements le system independent functions.
These independent functions are mapped into speci ¢ functions for one or more speci ¢ le system types.
Each of these le system types provides di erent le system ob ects. Below are general descriptions of the

le system types included in the evaluated con guration, followed by descriptions of the speci ¢ ob ects
provided by each. The two le system types included in this evaluation are the UNIX File System UFS
and the special le system specfs . This section does not describe the security decisions made by the le
system implementation. Rather, it identi es the structures and data used for those decisions Section 5.3,
“TCB Protection Mechanisms”, describes all the security decision details.

A single tree-structured le system is seen by processes in CX/SX. This single tree is usually made up of

several physical le systems linked together. Each physical le system is represented by a structure.

Active structures are linked into a list, and the rst structure represents the root le system. The
structure contains the following:
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a pointer to the next in the list

a pointer to a vector of generic operations on the

a pointer to the vnode on which this is mounted

a mutual exclusion semaphore to serialize access to the

a private data pointer to le system implementation speci c data

A le systems points to a vector of generic operations on the le system. This vector converts the

generic operation into the speci c¢ operation implemented by the speci ¢ le system. The system calls

for manipulating a le system that are supported by the generic operations in the vnode layer are ,
) ’ ) ’ and

All ob ects in the le system are represented by a virtual node vnode . The vnode contains the following
data:

a reference count
a pointer to the le system the vnode belongs to
a pointer to a vector of generic operations
a mutual exclusion semaphore to serialize access to the vnode itself and the underlying le-system-
speci ¢ data structure
the type of underlying le, which is one of the following:

regular le

directory le

block device special le

character device special le

symbolic link

UNIX domain socket

rst-in, rst-out FIFO le

a private data pointer that points to le system implementation speci ¢ data for UFS this is the les
index node, for specfs this is the device s specfs node, and for named pipes this is the le s FIFO node
see Section 3.6, “Interprocess Communication” .

The actual operation performed through the vector of generic operations is dependent on the underlying le
system. There are system calls to support generic operations for opening, creating, closing, accessing, and
changing attributes of le system ob ects.

The UNIX File System UFS resides on mass-storage media such as a disk drive. It converts a user s view
of a le into the structure imposed by such devices. The conversion of byte reads and writes to disk sector
reads and writes is called block I/O. UFS provides les, directories, hard links, symbolic links, named pipes,
device special les, and UNIX domain sockets. See the next section for a description of device special les,
and see page 55, “Interprocess Communication”, for details about UNIX domain sockets. Each of these
ob ects has an index node inode associated with it. The inode contains or points to the ob ect s data and
contains the following attributes:

logical-to-physical block mapping
le type
access mode
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le owner s uid
le s group id
number of hard links to le
time le was last read and written
time the inode was last updated by the system
size of le
number of physical blocks used by the le

Descriptions of the implementation and management of les, directories, hard links, symbolic links, and
quotas follow.

Files

A lein UFS is a sequence of bytes represented by one or more names. Files can be created, opened, read,
written, closed, and deleted. All les are represented uniquely by an inode. The inode is used to access a

le s data through the logical-to-physical block mappings. These mappings point to the locations on disk of
the les data. Files are created with either the or system calls. A name for the le is provided
by the issuer of the call, and the system allocates an inode and creates a directory entry for the le. A

le is deleted by issuing the system call, which deallocates the le s inode the inode is placed on a
least recently used LRU chain and deletes the le s directory entry. The le s disk blocks are then marked
available by updating block bookkeeping information on the disk.

Dire tories

A directory is a le with a structure imposed on it by the system, and only CX/SX can directly modify
a directory. A directory contains variable length entries that associate a le with a le name. Directories
may contain lenames referencing les, devices, and subdirectories. There is no inherent limitation on the
depth to which directory nesting may occur. A process identi es a le by specifying the les pathname. A
pathname is made up of zero or more lenames separated by forward slashes. All but the last lename in a
pathname must be directory names or a symbolic link see below to a directory name.

CX/SX associates with each process two directories for use in interpreting pathnames: a root directory and a
current working directory. A process s root directory is the topmost point in the le system that the process
can access. A pathname beginning with a slash is called an absolute pathname and is interpreted by the
kernel starting with the process s root directory. The current working directory is the directory the process is
using. A pathname that does not begin with a slash is called a relative pathname and is interpreted relative
to the current working directory of the process.

To nd a le CX/SX determines whether to begin the search in the current working directory or to start at
the root directory. The rst component of the pathname is extracted and the chosen directory is searched
to nd the name. If the name is a directory or a symbolic link, the next component of the pathname is
extracted and the search continues. Otherwise, if the pathname has been exhausted and the entry found is
a le, the search has completed.

Some directories in CX/SX are treated di erently in the evaluated con guration. These are called multilevel
directories, and a description of their attributes and how they are used can be found on page 115, “Multi-level
SECURED Directories”.
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